

Beginner's Python
Cheat Sheet - Classes
What are classes?
Classes are the foundation of object-oriented
programming. Classes represent real-world things
you want to model in your programs: for example
dogs, cars, and robots. You use a class to make
objects, which are specific instances of dogs, cars,
and robots. A class defines the general behavior that
a whole category of objects can have, and the
information that can be associated with those objects.
 Classes can inherit from each other – you can
write a class that extends the functionality of an
existing class. This allows you to code efficiently for a
wide variety of situations.

Creating and using a class (cont.)
Creating an object from a class
my_car = Car('audi', 'a4', 2016)

Accessing attribute values
print(my_car.make)
print(my_car.model)
print(my_car.year)

Calling methods
my_car.fill_tank()
my_car.drive()

Creating multiple objects
my_car = Car('audi', 'a4', 2019)
my_old_car = Car('subaru', 'outback', 2015)
my_truck = Car('toyota', 'tacoma', 2012)

Python Crash Course
A Hands-On, Project-Based

Introduction to Programming
nostarch.com/pythoncrashcourse2e

Creating and using a class
Consider how we might model a car. What information
would we associate with a car, and what behavior would it
have? The information is stored in variables called
attributes, and the behavior is represented by functions.
Functions that are part of a class are called methods.

The Car class
class Car:
 """A simple attempt to model a car."""

 def __init__(self, make, model, year):
 """Initialize car attributes."""
 self.make = make
 self.model = model
 self.year = year

 # Fuel capacity and level in gallons.
 self.fuel_capacity = 15
 self.fuel_level = 0

 def fill_tank(self):
 """Fill gas tank to capacity."""
 self.fuel_level = self.fuel_capacity
 print("Fuel tank is full.")

 def drive(self):
 """Simulate driving."""
 print("The car is moving.")

Modifying attributes
You can modify an attribute's value directly, or you can
write methods that manage updating values more carefully.

Modifying an attribute directly
my_new_car = Car('audi', 'a4', 2019)
my_new_car.fuel_level = 5

Writing a method to update an attribute's value
def update_fuel_level(self, new_level):
 """Update the fuel level."""
 if new_level <= self.fuel_capacity:
 self.fuel_level = new_level
 else:
 print("The tank can't hold that much!")

Writing a method to increment an attribute's value
def add_fuel(self, amount):
 """Add fuel to the tank."""
 if (self.fuel_level + amount
 <= self.fuel_capacity):
 self.fuel_level += amount
 print("Added fuel.")
 else:
 print("The tank won't hold that much.")

Class inheritance
If the class you're writing is a specialized version of another
class, you can use inheritance. When one class inherits
from another, it automatically takes on all the attributes and
methods of the parent class. The child class is free to
introduce new attributes and methods, and override
attributes and methods of the parent class.
 To inherit from another class include the name of the
parent class in parentheses when defining the new class.

The __init__() method for a child class
class ElectricCar(Car):
 """A simple model of an electric car."""

 def __init__(self, make, model, year):
 """Initialize an electric car."""
 super().__init__(make, model, year)

 # Attributes specific to electric cars.
 # Battery capacity in kWh.
 self.battery_size = 75
 # Charge level in %.
 self.charge_level = 0

Adding new methods to the child class
class ElectricCar(Car):
 --snip--
 def charge(self):
 """Fully charge the vehicle."""
 self.charge_level = 100
 print("The vehicle is fully charged.")

Using child methods and parent methods
my_ecar = ElectricCar('tesla', 'model s', 2019)

my_ecar.charge()
my_ecar.drive()

Naming conventions
In Python class names are written in CamelCase and object
names are written in lowercase with underscores. Modules
that contain classes should be named in lowercase with
underscores.

Finding your workflow
There are many ways to model real world objects and
situations in code, and sometimes that variety can feel
overwhelming. Pick an approach and try it – if your first
attempt doesn't work, try a different approach.

Class inheritance (cont.)
Overriding parent methods
class ElectricCar(Car):
 --snip--
 def fill_tank(self):
 """Display an error message."""
 print("This car has no fuel tank!")

More cheat sheets available at
ehmatthes.github.io/pcc_2e/

More cheat sheets available at
github.com/ehmatthes/pcc/cheatsheets

Understanding self
People often ask what the self variable represents. The
self variable is a reference to an object that's been
created from the class.
 The self variable provides a way to make other variables
and objects available everywhere in a class. The self
variable is automatically passed to each method that's
called through an object, which is why you see it listed first
in every method definition. Any variable attached to self is
available everywhere in the class.

Storing objects in a list
A list can hold as many items as you want, so you can
make a large number of objects from a class and store
them in a list.
 Here's an example showing how to make a fleet of rental
cars, and make sure all the cars are ready to drive.

A fleet of rental cars
from car import Car, ElectricCar

Make lists to hold a fleet of cars.
gas_fleet = []
electric_fleet = []

Make 500 gas cars and 250 electric cars.
for _ in range(500):
 car = Car('ford', 'escape', 2019)
 gas_fleet.append(car)
for _ in range(250):
 ecar = ElectricCar('nissan', 'leaf', 2019)
 electric_fleet.append(ecar)

Fill the gas cars, and charge electric cars.
for car in gas_fleet:
 car.fill_tank()
for ecar in electric_fleet:
 ecar.charge()

print(f"Gas cars: {len(gas_fleet)}")
print(f"Electric cars: {len(electric_fleet)}")

Instances as attributes
A class can have objects as attributes. This allows classes
to work together to model complex situations.

A Battery class
class Battery:
 """A battery for an electric car."""

 def __init__(self, size=75):
 """Initialize battery attributes."""
 # Capacity in kWh, charge level in %.
 self.size = size
 self.charge_level = 0

 def get_range(self):
 """Return the battery's range."""
 if self.size == 75:
 return 260
 elif self.size == 100:
 return 315

Using an instance as an attribute
class ElectricCar(Car):
 --snip--

 def __init__(self, make, model, year):
 """Initialize an electric car."""
 super().__init__(make, model, year)

 # Attribute specific to electric cars.
 self.battery = Battery()

 def charge(self):
 """Fully charge the vehicle."""
 self.battery.charge_level = 100
 print("The vehicle is fully charged.")

Using the instance
my_ecar = ElectricCar('tesla', 'model x', 2019)

my_ecar.charge()
print(my_ecar.battery.get_range())
my_ecar.drive()

Importing classes
Class files can get long as you add detailed information and
functionality. To help keep your program files uncluttered,
you can store your classes in modules and import the
classes you need into your main program.

Storing classes in a file
car.py

"""Represent gas and electric cars."""

class Car:
 """A simple attempt to model a car."""
 --snip—

class Battery:
 """A battery for an electric car."""
 --snip--

class ElectricCar(Car):
 """A simple model of an electric car."""
 --snip--

Importing individual classes from a module
my_cars.py

from car import Car, ElectricCar

my_beetle = Car('volkswagen', 'beetle', 2016)
my_beetle.fill_tank()
my_beetle.drive()

my_tesla = ElectricCar('tesla', 'model s',
2016)
my_tesla.charge()
my_tesla.drive()

Importing an entire module
import car

my_beetle = car.Car(
 'volkswagen', 'beetle', 2019)
my_beetle.fill_tank()
my_beetle.drive()

my_tesla = car.ElectricCar(
 'tesla', 'model s', 2019)
my_tesla.charge()
my_tesla.drive()

Importing all classes from a module
(Don’t do this, but recognize it when you see it.)

from car import *

my_beetle = Car('volkswagen', 'beetle', 2016)

Understanding __init__()
The __init__() method is a function that's part of a class,
just like any other method. The only special thing about
__init__() is that it's called automatically every time you
make a new object from a class. If you accidentally misspell
__init__(), the method will not be called and your object
may not be created correctly.

